Source codeVideos

Command Palette

Search for a command to run...

Trigonometry

Special Angles in Trigonometric Comparisons

What are Special Angles?

Special angles in trigonometric ratios are angles whose ratio values can be determined exactly (precise values) without using a calculator. These values are very important to remember and will be frequently used in various mathematical and physics calculations.

The most common special angles are 0°, 30°30°, 45°45°, 60°60°, and 90°90°.

Visualization of Special Angles on the Unit Circle
Move the slider to angles 0°, 30°30°, 45°45°, 60°60°, or 90°90° to see the positions of special angles.
0.79 Radian
360°

Exact Values of Trigonometric Ratios for Special Angles

Below is a table of exact values for trigonometric ratios at special angles:

Ratio0°30°30°45°45°60°60°90°90°
sinθ\sin \theta0012\frac{1}{2}12=22\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}32\frac{\sqrt{3}}{2}11
cosθ\cos \theta1132\frac{\sqrt{3}}{2}12=22\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}12\frac{1}{2}00
tanθ\tan \theta0013=33\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}113\sqrt{3}Undefined

Origin of Exact Values

The exact values for special angles are derived from:

  1. Angles 30°30° and 60°60°: Obtained from a right triangle with side ratio 1:2:31 : 2 : \sqrt{3}.
  2. Angle 45°45°: Obtained from an isosceles right triangle with side ratio 1:1:21 : 1 : \sqrt{2}.